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1 The Itd Integral for L? Functions

1.1 The It6 integral for simple functions

Recall: If f € L?(Qp ® [0,T)), where f(w,t) is F; measurable for each t, we want to

understand the integral
T
= / f(w, t) dBt
0

If f(w,t) is the number of stocks we have at time ¢, then the integral gives the profit we
get between 0 and T'. We start by analyzing the function

f=a(w)ly, 4, (1), 0<t1 <t <T
This is a step function on a fixed interval with a random height. In this case,
Ir(f) = a(w) - B(t2) — B(t1).

This is intuitive: this function says we buy a stocks at time ¢; and sell them at ¢o; so the
profit is the change in price of stocks from t; to to times the number of shares I have.
The integral is linear, so for simple functions,

f= Zak D)) ap € Fy = Ip(f) = 3 an(@)(B(E) - B(t))).

1.2 Extending the Itd integral to general L? functions

2
If f € L?, we want to find a sequence of simple functions fy, L, f so we can let Ip(f) :=
limy, I7(f).

Lemma 1.1. If f is a simple function,

£l 2 xjo,m) = IHT(F)ll 20



Proof. Suppose f = a(w)1[s, ,(t) + b(w) L, 1, With s1 <t < sp < ta. First,

T
E [/ f? dt] =E[(t1 — s1)a® + (52 — t1)(a + b)* + (t2 — s2)b”].
0
On the other hand,

E[I7(f)] = E[[(B(t1) — B(s1))a + (B(s2) = B(t1))(a +b) + (B(t2) — B(s2))b]’]

Say the intervals are J; = [s1,t1], Jo = [t1,82] and J3 = [s2,t2]. Then if we look at
E[B(J1)aB(Jz2)(a+b)] for example, B(Jz2) is independent of the rest. So the crossing terms
cancel.

E[(B(t1) — B(s1))*a® + (B(s2) — B(t1))*(a + b)* + (B(t2) — B(s2))?b]
= (t1 — 1) E[a?] + (s2 — t1) E[(a + b)?] + (to — s2) E[b?]. O

So we get that I : L?(2 x [0,1]) — L?(Q) is isometric on simple functions. So if
Il fm — full2 = 0, we get [ I7(fm) — I7(fn)|l2 = 0. So we can convert Cauchy sequences in
L?(Q2 x [0,1]) to Cauchy sequences in L?(£2), find the limit, and use it to define I (f).

Remark 1.1. I7(f) is “only” L%-unique. So if h = I7(f) except in a probability 0 set, h
is also lim I7(fx). This is the same as with the definition of conditional expectation.

1.3 The Ito integral as a random function
It <T, let
t
F(w,t) :/ f(w,s)dBs
0

F' is a random function. We should believe that F' € C([0,1]) a.s. Here is the issue: for
any t, we know F(w,t) in a probability 1 set. But we want to have a random variable
for all ¢ at once. We can have P(F(w,t) = F(w,t)) = 1 for fixed ¢, but it is still possible
that P(F' # F) = 1 because {F = F} = [, {F(w,t) = F(w,t)}; this is an uncountable
intersection.

So if we want to define the random function F(w,t), it is not a “simple” extension of
I7(f). To make the construction work out, we need to make sure F' is continuous. But this
is hard in general; in general, if I have X; for each t, it’s not easy to find F(t) € C(]0,1])

with F'(t) 4 X; for each t. We will need to find a sequence of continuous functions that
converge uniformly to F(w,t).
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